Search results for "nuclear spin and parity"
showing 9 items of 9 documents
Isomeric 13/2+ state in 201Fr
2020
We have identified an isomeric state in 201Fr for which we propose a spin and parity of 13/2 +, and interpret it as arising from the π(i13/2 ) configuration. A half-life of 720(40) ns was measured, corresponding to B(M2) = 0.17(2) W.u., in good agreement with those of other 13/2 + → 9/2 − [π(i13/2 ) → π(h9/2 )] transitions observed in other nuclei in the region. The nuclei of interest were produced in a fusion-evaporation reaction and their decay properties were investigated using the GREAT spectrometer at the focal plane of the RITU gas-filled recoil separator. peerReviewed
Spectroscopy of low-spin states in $^{157}\mathrm{Dy}$: Search for evidence of enhanced octupole correlations
2019
Low-spin states of 157Dy have been studied using the JUROGAM II array, following the 155Gd ({\alpha}, 2n) reaction at a beam energy of 25 MeV. The level scheme of 157Dy has been expanded with four new bands. Rotational structures built on the [523]5/2- and [402]3/2+ neutron orbitals constitute new additions to the level scheme as do many of the inter- and intra-band transitions. This manuscript also reports the observation of cross I- to (I-1)- and I- to (I-1)+ E1 dipole transitions inter-linking structures built on the [523]5/2- (band 5) and [402]3/2+ (band 7) neutron orbitals. These interlacing band structures are interpreted as the bands of parity doublets with simplex quantum number s =…
First candidates for γ vibrational bands built on the [505]11/2⁻ neutron orbital in odd-A Dy isotopes
2020
Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the cor…
Exploring the boundaries of the nuclear landscape : α-decay properties of 211Pa
2020
Employing the recoil ion transport unit (RITU) and a fusion-evaporation reaction, the α decay of 211Pa has been identified via the implantation-decay correlation technique through observation of chains up to four consecutive decays. An α-particle energy and half-life of 8320(40) keV and 3.8+4.6−1.4 ms, respectively, were measured, corresponding to favored α decay. In addition, more precise α-decay properties of 212Pa and 213Pa were obtained due to accumulated statistics. The present data were compared to those predicted by selected atomic mass models and it was used to estimate the possibility of observing proton emission from these isotopes. peerReviewed
Level structure above the 17+ isomeric state in 152 69 Tm83
2018
Excited states above the 17+ isomeric state in the proton-rich nucleus 152Tm were established by employing the recoil-isomer tagging technique. Data were collected using the JUROGAM gamma-ray array and the GREAT spectrometer together with the recoil ion transport unit (RITU) gas-filled recoil separator and analyzed to identify the prompt and delayed γ decays from the levels in 152Tm. Shell-model calculations, either in a large valence space or in a reduced model space with five protons in the π0h11/2 orbital and one neutron in the ν1f7/2 orbital, agree with the observed energies of the yrast levels up to angular momentum J = 21. The observation of near degeneracies in the energy spectrum ca…
Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf
2018
Fine structure in the α decay of high-spin isomers in 155Lu(25/2−) and 156Hf (8+) has been studied for the first time using αγ -coincidence analysis. Three new α decays from 155Lu(25/2−) and two from 156Hf (8+) have been identified, populating seniority s > 1 states in the N = 82 nuclei 151Tm and 152Yb, respectively. The reduced hindrance factors of the α decays support the previous configuration assignments of the populated states. This is the first observation of states with excitation energy greater than 1.5 MeV being populated following α decay in nuclei outside of the 208Pb region. peerReviewed
Excited states in 87Br populated in β decay of 87Se
2019
Excited levels in 87Br, populated in β decay of 87Se, have been studied by means of γ-ray spectroscopy using an array of broad energy Ge detectors. 87Se nuclei were produced by irradiating a natural Th target with 25-MeV protons. Fission products were extracted from the target chamber using the IGISOL technique, then separated on a dipole magnet and Penning trap (JYFLTRAP) setup. The scheme of excited levels of 87Br has been significantly extended. 114 new transitions and 51 new levels were established. β feedings and log(ft) values of levels were determined. The upper limit for β feeding to the ground state of 87Br was determined to be 23(5)%. Ground state spin and parity 5/2− was confirme…
In-beam γ-ray and electron spectroscopy of Md249,251
2020
The odd-Z 251Md nucleus was studied using combined γ-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the [521]1/2− configuration, another rotational structure has been identified using γ−γ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a [514]7/2− single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of ≃60% was well reproduced by simulating a set of unresolved ex…
β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory…
2019
A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V(β,γ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixe…